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Annotation: The initial value problem of solvability and construction of 

solutions of a nonlinear Fredholm integro-differential equation of first order with 

degenerate kernel and nonlinear maxima are considered. Using the method of 

degenerate kernel in combination it with the method of regularization, we obtain an 

implicit functional-differential equation of first order with nonlinear maxima. We use 

initial boundary conditions to ensure the uniqueness of the solution.  In order to use 

the method of a successive approximations and prove the one value solvability, we 

transform the obtained implicit functional-differential equation to the nonlinear 

Volterra type integro-differential equation with nonlinear maxima. The one value 

solvability of the problem is proved. 
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Formulation of the problem 

 

 Integro-differential equations as integral and differential equations are 

mathematical models of the many physical processes and the operation in technical 

systems. In application of integro-differential equations the analytical and iterative 

methods play an important role [1-8].  

 

In this paper, we study the initial value problem of one value solvability and 

construction of solutions of a nonlinear Fredholm integro-differential equation of first 

order with degenerate kernel and nonlinear maxima. When a kernel of integral is 

degenerate, it is easy to replace the given equation by implicit differential equation, 

which is convenient to transform into Volterra integro-differential equation for 

solving by the method of successive approximations. The integral and integro-

differential equations with degenerate kernels were considered by many authors (see, 

for example [9-21]). 
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So, in our paper, using the method of degenerate kernel in combination it with the 

regularization method, we obtain an implicit functional-differential equation with 

nonlinear maxima. As you know, Fredholm functional integro-differential equation of 

first kind is ill-posed. So, we use initial boundary conditions to ensure the uniqueness 

of the solution.  In order to use the method of a successive approximations, we 

transform the implicit functional-differential equation to the nonlinear Volterra type 

functional integro-differential equation, which is ill-posed, too. The one value 

solvability of this problem we have proved by the given initial boundary conditions. 

 

 On the segment [0; ]T   the following nonlinear Fredholm integro-differential 

equation of first kind and first order is considered 
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where 0 T  is given real number,   is nonzero parameter of marching, 
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0 ( ), ( ) [0; ],i ia t b s C T   X  is closed set on real number set. Here it is assumed that 

each of the systems of functions )(ta i , ,,1 ki   and )(sb i , ,,1 ki   linearly 

independent, 1 01 2(0) , ( ) ( )T u T    . 

  

Method of degenerate kernel 

 

Taking into account the degeneracy of the kernel, equation (1) is written in the 

following form 
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Using the notation   
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and introducing new unknown function ( )t , we obtain from (3) approximation 

Fredholm second kind integral equation with small parameter  
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0   is small parameter. 

 

 Using the new notation  

0
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T

i ib s s d s                                              (7) 

the integral equation (5) can be rewritten as follows 
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Substituting (8) into (7), we obtain the system of linear equations (SLE) 
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 Consider the following determinants: 
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SLE (9) is uniquely soluble for any finite right-hand sides, if the nondegeneracy 

condition (11) of the Fredholm determinant is fulfilled.  The determinant ( )  in (11) 

is a polynomial with respect to   of degree not higher .k  The equation ( ) 0   has 
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at most k  different real roots. We denote them by ( 1, , 1 )l l p p k    . Then 
l   

called irregular values of the second spectral parameter  . Other values of the 

spectral parameter 
l   are called regular. The solutions of SLE (9) for regular 

values of parameter   are written as  
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i

i i k
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Substituting (12) into (8), we obtain 
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By virtue of formula (10), we suppose that 
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where  , , 1, .i ic C const i k   

 

The parameter   is marching parameter between free term function ( )f t  and kernel 

of integral equation (1). So, we choose one of the regular values of the parameter   

such that the first of condition (14) is fulfilled.  Then, taking into account limit 

passing formula (6), from (13) we obtain 

1

( ) ( ).
k

i i

i

t C a t 


                                                (15) 

Now the function ( )t  is known and defines by the formula (15). So, we solve the 

implicit functional equation (4). We rewrite this implicit equation as 
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with given conditions (2), where G F   . 

 

Transform into nonlinear Volterra type integral equation 

 

In solving the implicit functional equation (16) we use the method of successive 

approximations in combination it with the method of compressing mapping. 

However, it is impossible to directly apply the method of successive approximations 

to the equation (16) with nonlinear deviation. Therefore, in this work we propose the 

following method. On the segment [0; ]T  we take arbitrary positive defined and 

continuous function 0( )K t . We introduce the notation 

0( , ) ( ) , ( ,0) ( ), [0; ].

t

s

t s K d t t t T        

 It is obvious that ( , ) ( ) ( ).t s t s     By the solution of equation (1) we mean a 

continuous function  ( )u t  on the segment [0; ]T  that satisfies equation (1) with the 

given conditions (2) and the Lipschitz condition:   
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We write the implicit equation (16) as 
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Hence, using resolvent of the kernel  0( )K s , we obtain 
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Appling Dirichlet’s formula to (18) (see [21]), we derive the following Volterra type 

nonlinear functional-integro-differential equation  
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where 

   0 0( , ) ( )exp ( , ) ( )exp ( , ) .
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 By integrating functional-integro-differential equation (19) on the interval 

(0; )t  with initial condition 01(0)u  we obtain the following functional-integro-

differential equation 
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Remark. The nonlinear functional-integro-differential equations (19) and (21) are ill-

posed [Non2], so we will study it with given conditions (2). In addition, we consider 

the conditions (2) as ( 0) ( 0)u t u t    at the points  0t   and t T . 

 

Let be fulfilled the conditions (11) and (14). Then, instead of the Fredholm 

functional-integro-differntial equation of first kind (1) we will study the Volterra type 

functional-integro-differential equations (19) and (21) with conditions (2). 

 

Theorem. Let be fulfilled the conditions (17) and  
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Then the nonlinear functional-integro-differential equation (21) with conditions (2) 

has a unique solution on the segment [0; ]T . 

 

Proof. We suppose that Picard iteration process for functional-integro-differential 

equations (19) and (21) is given by 
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First, we take estimate for the function ( , )H t s , given by formula (20): 
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By virtue of conditions of theorem and Picard processes (22) and (23), by using 

estimates (25) and (26), for the first approximations we obtain the estimates 
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In choosing the function 0( )K t  we take into account that 

0( , ) ( ) 1, [0; ].

t

s
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Hence, we obtain that exp{ ( )} 1.t  So, the functions ( , )H t s  and ( , )Q t s  are 



 11 

small. Then the functions 
1 2( ), ( ), 1,2iL t L t i   we can choose such that 1   and 

last condition of the theorem is fulfilled. We consider the solution of the integral 

equations (19) and (21) in the space of continuous functions  0;C T , satisfying 

condition (17). Since 1 1( ) ( ) ( ) ( )n n n nu t u t U t U t    , it follows from the estimate 

(33) that the integral operator on the right-hand side of (21) with conditions (2) is 

compressing mapping.  So, from the estimates (25)--(28) and (33) implies that the 

integral equation (21) with conditions (2) has a unique solution on the segment  0;T . 

The theorem is proved. 

 

Conclusion 

 

In this paper, we studied the problems of one value solvability and construction of 

solutions of a nonlinear Fredholm first kind functional integro-differential equation 

(1) of first order with degenerate kernel and nonlinear maxima. This Fredholm 

functional-integro-differential equation is ill-posed. So, we use boundary conditions 

(2) to ensure the uniqueness of the solution.  First, using the method of degenerate 

kernel, we obtained the implicit functional-differential equation (16). In order to use 

the method of a successive approximations we reduce the implicit functional-

differential equation (16) with nonlinear maxima to the nonlinear Volterra type first 

order functional integro-differential equation. So, the feature of this paper is such that 

first kind nonlinear Fredholm functional integro-differential equation (1) was 

replaced by the Volterra type functional integro-differential equation (21).  

 

The nonlinear functional integro-differential equation (21) we conditionally called as 

a second kind Volterra type nonlinear functional integro-differential equation of first 

order. Because this Volterra type integro-differential equation (21) is ill-posed, too. 

So, we studied it by the given conditions (2). In addition, in the conditions (2) we 

suppose the continuous gluing conditions that ( 0) ( 0)u t u t    at the points  0t   

and t T . 

 

Let be fulfilled the conditions (11) and (14). Then, instead of the first kind Fredholm 

functional integro-differential equation of first order (1) we will study the second 

kind Volterra type functional integro-differential equation of first order (21) with 

conditions (2). The theorem of one value solvability of the problem (1), (2) was 

proved. 
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